verify
VERIFY(1) OpenSSL VERIFY(1)
NAME
verify - Utility to verify certificates.
SYNOPSIS
openssl verify [-CApath directory] [-CAfile file] [-purpose purpose]
[-untrusted file] [-help] [-issuer_checks] [-verbose] [-] [certifi-
cates]
DESCRIPTION
The verify command verifies certificate chains.
COMMAND OPTIONS
-CApath directory
A directory of trusted certificates. The certificates should have
names of the form: hash.0 or have symbolic links to them of this
form ("hash" is the hashed certificate subject name: see the -hash
option of the x509 utility). Under Unix the c_rehash script will
automatically create symbolic links to a directory of certificates.
-CAfile file
A file of trusted certificates. The file should contain multiple
certificates in PEM format concatenated together.
-untrusted file
A file of untrusted certificates. The file should contain multiple
certificates
-purpose purpose
the intended use for the certificate. Without this option no chain
verification will be done. Currently accepted uses are sslclient,
sslserver, nssslserver, smimesign, smimeencrypt. See the VERIFY
OPERATION section for more information.
-help
prints out a usage message.
-verbose
print extra information about the operations being performed.
-issuer_checks
print out diagnostics relating to searches for the issuer certifi-
cate of the current certificate. This shows why each candidate
issuer certificate was rejected. However the presence of rejection
messages does not itself imply that anything is wrong: during the
normal verify process several rejections may take place.
- marks the last option. All arguments following this are assumed to
be certificate files. This is useful if the first certificate file-
name begins with a -.
certificates
one or more certificates to verify. If no certificate filenames are
included then an attempt is made to read a certificate from stan-
dard input. They should all be in PEM format.
VERIFY OPERATION
The verify program uses the same functions as the internal SSL and
S/MIME verification, therefore this description applies to these verify
operations too.
There is one crucial difference between the verify operations performed
by the verify program: wherever possible an attempt is made to continue
after an error whereas normally the verify operation would halt on the
first error. This allows all the problems with a certificate chain to
be determined.
The verify operation consists of a number of separate steps.
Firstly a certificate chain is built up starting from the supplied cer-
tificate and ending in the root CA. It is an error if the whole chain
cannot be built up. The chain is built up by looking up the issuers
certificate of the current certificate. If a certificate is found which
is its own issuer it is assumed to be the root CA.
The process of 'looking up the issuers certificate' itself involves a
number of steps. In versions of OpenSSL before 0.9.5a the first cer-
tificate whose subject name matched the issuer of the current certifi-
cate was assumed to be the issuers certificate. In OpenSSL 0.9.6 and
later all certificates whose subject name matches the issuer name of
the current certificate are subject to further tests. The relevant
authority key identifier components of the current certificate (if
present) must match the subject key identifier (if present) and issuer
and serial number of the candidate issuer, in addition the keyUsage
extension of the candidate issuer (if present) must permit certificate
signing.
The lookup first looks in the list of untrusted certificates and if no
match is found the remaining lookups are from the trusted certificates.
The root CA is always looked up in the trusted certificate list: if the
certificate to verify is a root certificate then an exact match must be
found in the trusted list.
The second operation is to check every untrusted certificate's exten-
sions for consistency with the supplied purpose. If the -purpose option
is not included then no checks are done. The supplied or "leaf" cer-
tificate must have extensions compatible with the supplied purpose and
all other certificates must also be valid CA certificates. The precise
extensions required are described in more detail in the CERTIFICATE
EXTENSIONS section of the x509 utility.
The third operation is to check the trust settings on the root CA. The
root CA should be trusted for the supplied purpose. For compatibility
with previous versions of SSLeay and OpenSSL a certificate with no
trust settings is considered to be valid for all purposes.
The final operation is to check the validity of the certificate chain.
The validity period is checked against the current system time and the
notBefore and notAfter dates in the certificate. The certificate signa-
tures are also checked at this point.
If all operations complete successfully then certificate is considered
valid. If any operation fails then the certificate is not valid.
DIAGNOSTICS
When a verify operation fails the output messages can be somewhat cryp-
tic. The general form of the error message is:
server.pem: /C=AU/ST=Queensland/O=CryptSoft Pty Ltd/CN=Test CA (1024 bit)
error 24 at 1 depth lookup:invalid CA certificate
The first line contains the name of the certificate being verified fol-
lowed by the subject name of the certificate. The second line contains
the error number and the depth. The depth is number of the certificate
being verified when a problem was detected starting with zero for the
certificate being verified itself then 1 for the CA that signed the
certificate and so on. Finally a text version of the error number is
presented.
An exhaustive list of the error codes and messages is shown below, this
also includes the name of the error code as defined in the header file
x509_vfy.h Some of the error codes are defined but never returned:
these are described as "unused".
0 X509_V_OK: ok
the operation was successful.
2 X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT: unable to get issuer certifi-
cate
the issuer certificate could not be found: this occurs if the
issuer certificate of an untrusted certificate cannot be found.
3 X509_V_ERR_UNABLE_TO_GET_CRL unable to get certificate CRL
the CRL of a certificate could not be found. Unused.
4 X509_V_ERR_UNABLE_TO_DECRYPT_CERT_SIGNATURE: unable to decrypt cer-
tificate's signature
the certificate signature could not be decrypted. This means that
the actual signature value could not be determined rather than it
not matching the expected value, this is only meaningful for RSA
keys.
5 X509_V_ERR_UNABLE_TO_DECRYPT_CRL_SIGNATURE: unable to decrypt CRL's
signature
the CRL signature could not be decrypted: this means that the
actual signature value could not be determined rather than it not
matching the expected value. Unused.
6 X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY: unable to decode
issuer public key
the public key in the certificate SubjectPublicKeyInfo could not be
read.
7 X509_V_ERR_CERT_SIGNATURE_FAILURE: certificate signature failure
the signature of the certificate is invalid.
8 X509_V_ERR_CRL_SIGNATURE_FAILURE: CRL signature failure
the signature of the certificate is invalid. Unused.
9 X509_V_ERR_CERT_NOT_YET_VALID: certificate is not yet valid
the certificate is not yet valid: the notBefore date is after the
current time.
10 X509_V_ERR_CERT_HAS_EXPIRED: certificate has expired
the certificate has expired: that is the notAfter date is before
the current time.
11 X509_V_ERR_CRL_NOT_YET_VALID: CRL is not yet valid
the CRL is not yet valid. Unused.
12 X509_V_ERR_CRL_HAS_EXPIRED: CRL has expired
the CRL has expired. Unused.
13 X509_V_ERR_ERROR_IN_CERT_NOT_BEFORE_FIELD: format error in certifi-
cate's notBefore field
the certificate notBefore field contains an invalid time.
14 X509_V_ERR_ERROR_IN_CERT_NOT_AFTER_FIELD: format error in certifi-
cate's notAfter field
the certificate notAfter field contains an invalid time.
15 X509_V_ERR_ERROR_IN_CRL_LAST_UPDATE_FIELD: format error in CRL's
lastUpdate field
the CRL lastUpdate field contains an invalid time. Unused.
16 X509_V_ERR_ERROR_IN_CRL_NEXT_UPDATE_FIELD: format error in CRL's
nextUpdate field
the CRL nextUpdate field contains an invalid time. Unused.
17 X509_V_ERR_OUT_OF_MEM: out of memory
an error occurred trying to allocate memory. This should never hap-
pen.
18 X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT: self signed certificate
the passed certificate is self signed and the same certificate can-
not be found in the list of trusted certificates.
19 X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN: self signed certificate in
certificate chain
the certificate chain could be built up using the untrusted cer-
tificates but the root could not be found locally.
20 X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY: unable to get local
issuer certificate
the issuer certificate of a locally looked up certificate could not
be found. This normally means the list of trusted certificates is
not complete.
21 X509_V_ERR_UNABLE_TO_VERIFY_LEAF_SIGNATURE: unable to verify the
first certificate
no signatures could be verified because the chain contains only one
certificate and it is not self signed.
22 X509_V_ERR_CERT_CHAIN_TOO_LONG: certificate chain too long
the certificate chain length is greater than the supplied maximum
depth. Unused.
23 X509_V_ERR_CERT_REVOKED: certificate revoked
the certificate has been revoked. Unused.
24 X509_V_ERR_INVALID_CA: invalid CA certificate
a CA certificate is invalid. Either it is not a CA or its exten-
sions are not consistent with the supplied purpose.
25 X509_V_ERR_PATH_LENGTH_EXCEEDED: path length constraint exceeded
the basicConstraints pathlength parameter has been exceeded.
26 X509_V_ERR_INVALID_PURPOSE: unsupported certificate purpose
the supplied certificate cannot be used for the specified purpose.
27 X509_V_ERR_CERT_UNTRUSTED: certificate not trusted
the root CA is not marked as trusted for the specified purpose.
28 X509_V_ERR_CERT_REJECTED: certificate rejected
the root CA is marked to reject the specified purpose.
29 X509_V_ERR_SUBJECT_ISSUER_MISMATCH: subject issuer mismatch
the current candidate issuer certificate was rejected because its
subject name did not match the issuer name of the current certifi-
cate. Only displayed when the -issuer_checks option is set.
30 X509_V_ERR_AKID_SKID_MISMATCH: authority and subject key identifier
mismatch
the current candidate issuer certificate was rejected because its
subject key identifier was present and did not match the authority
key identifier current certificate. Only displayed when the
-issuer_checks option is set.
31 X509_V_ERR_AKID_ISSUER_SERIAL_MISMATCH: authority and issuer serial
number mismatch
the current candidate issuer certificate was rejected because its
issuer name and serial number was present and did not match the
authority key identifier of the current certificate. Only displayed
when the -issuer_checks option is set.
32 X509_V_ERR_KEYUSAGE_NO_CERTSIGN:key usage does not include certifi-
cate signing
the current candidate issuer certificate was rejected because its
keyUsage extension does not permit certificate signing.
50 X509_V_ERR_APPLICATION_VERIFICATION: application verification fail-
ure
an application specific error. Unused.
BUGS
Although the issuer checks are a considerably improvement over the old
technique they still suffer from limitations in the underlying
X509_LOOKUP API. One consequence of this is that trusted certificates
with matching subject name must either appear in a file (as specified
by the -CAfile option) or a directory (as specified by -CApath. If they
occur in both then only the certificates in the file will be recog-
nised.
Previous versions of OpenSSL assume certificates with matching subject
name are identical and mishandled them.
SEE ALSO
x509(1)
0.9.7a 2001-10-08 VERIFY(1)