CRYPTO_set_locking_callback
threads(3) OpenSSL threads(3)
NAME
CRYPTO_set_locking_callback, CRYPTO_set_id_callback, CRYPTO_num_locks,
CRYPTO_set_dynlock_create_callback, CRYPTO_set_dynlock_lock_callback,
CRYPTO_set_dynlock_destroy_callback, CRYPTO_get_new_dynlockid,
CRYPTO_destroy_dynlockid, CRYPTO_lock - OpenSSL thread support
SYNOPSIS
#include <openssl/crypto.h>
void CRYPTO_set_locking_callback(void (*locking_function)(int mode,
int n, const char *file, int line));
void CRYPTO_set_id_callback(unsigned long (*id_function)(void));
int CRYPTO_num_locks(void);
/* struct CRYPTO_dynlock_value needs to be defined by the user */
struct CRYPTO_dynlock_value;
void CRYPTO_set_dynlock_create_callback(struct CRYPTO_dynlock_value *
(*dyn_create_function)(char *file, int line));
void CRYPTO_set_dynlock_lock_callback(void (*dyn_lock_function)
(int mode, struct CRYPTO_dynlock_value *l,
const char *file, int line));
void CRYPTO_set_dynlock_destroy_callback(void (*dyn_destroy_function)
(struct CRYPTO_dynlock_value *l, const char *file, int line));
int CRYPTO_get_new_dynlockid(void);
void CRYPTO_destroy_dynlockid(int i);
void CRYPTO_lock(int mode, int n, const char *file, int line);
#define CRYPTO_w_lock(type) \
CRYPTO_lock(CRYPTO_LOCK|CRYPTO_WRITE,type,__FILE__,__LINE__)
#define CRYPTO_w_unlock(type) \
CRYPTO_lock(CRYPTO_UNLOCK|CRYPTO_WRITE,type,__FILE__,__LINE__)
#define CRYPTO_r_lock(type) \
CRYPTO_lock(CRYPTO_LOCK|CRYPTO_READ,type,__FILE__,__LINE__)
#define CRYPTO_r_unlock(type) \
CRYPTO_lock(CRYPTO_UNLOCK|CRYPTO_READ,type,__FILE__,__LINE__)
#define CRYPTO_add(addr,amount,type) \
CRYPTO_add_lock(addr,amount,type,__FILE__,__LINE__)
DESCRIPTION
OpenSSL can safely be used in multi-threaded applications provided that
at least two callback functions are set.
locking_function(int mode, int n, const char *file, int line) is needed
to perform locking on shared data structures. (Note that OpenSSL uses
a number of global data structures that will be implicitly shared when-
ever multiple threads use OpenSSL.) Multi-threaded applications will
crash at random if it is not set.
locking_function() must be able to handle up to CRYPTO_num_locks() dif-
ferent mutex locks. It sets the n-th lock if mode & CRYPTO_LOCK, and
releases it otherwise.
file and line are the file number of the function setting the lock.
They can be useful for debugging.
id_function(void) is a function that returns a thread ID. It is not
needed on Windows nor on platforms where getpid() returns a different
ID for each thread (most notably Linux).
Additionally, OpenSSL supports dynamic locks, and sometimes, some parts
of OpenSSL need it for better performance. To enable this, the follow-
ing is required:
o Three additional callback function, dyn_create_function,
dyn_lock_function and dyn_destroy_function.
o A structure defined with the data that each lock needs to handle.
struct CRYPTO_dynlock_value has to be defined to contain whatever
structure is needed to handle locks.
dyn_create_function(const char *file, int line) is needed to create a
lock. Multi-threaded applications might crash at random if it is not
set.
dyn_lock_function(int mode, CRYPTO_dynlock *l, const char *file, int
line) is needed to perform locking off dynamic lock numbered n. Multi-
threaded applications might crash at random if it is not set.
dyn_destroy_function(CRYPTO_dynlock *l, const char *file, int line) is
needed to destroy the lock l. Multi-threaded applications might crash
at random if it is not set.
CRYPTO_get_new_dynlockid() is used to create locks. It will call
dyn_create_function for the actual creation.
CRYPTO_destroy_dynlockid() is used to destroy locks. It will call
dyn_destroy_function for the actual destruction.
CRYPTO_lock() is used to lock and unlock the locks. mode is a bitfield
describing what should be done with the lock. n is the number of the
lock as returned from CRYPTO_get_new_dynlockid(). mode can be combined
from the following values. These values are pairwise exclusive, with
undefined behaviour if misused (for example, CRYPTO_READ and
CRYPTO_WRITE should not be used together):
CRYPTO_LOCK 0x01
CRYPTO_UNLOCK 0x02
CRYPTO_READ 0x04
CRYPTO_WRITE 0x08
RETURN VALUES
CRYPTO_num_locks() returns the required number of locks.
CRYPTO_get_new_dynlockid() returns the index to the newly created lock.
The other functions return no values.
NOTE
You can find out if OpenSSL was configured with thread support:
#define OPENSSL_THREAD_DEFINES
#include <openssl/opensslconf.h>
#if defined(THREADS)
// thread support enabled
#else
// no thread support
#endif
Also, dynamic locks are currently not used internally by OpenSSL, but
may do so in the future.
EXAMPLES
crypto/threads/mttest.c shows examples of the callback functions on
Solaris, Irix and Win32.
HISTORY
CRYPTO_set_locking_callback() and CRYPTO_set_id_callback() are avail-
able in all versions of SSLeay and OpenSSL. CRYPTO_num_locks() was
added in OpenSSL 0.9.4. All functions dealing with dynamic locks were
added in OpenSSL 0.9.5b-dev.
SEE ALSO
crypto(3)
0.9.7a 2001-11-08 threads(3)